TSX.V: CJC FSE: YXEN OTC-BB: CJCFF

Bureau corporatif:

2101 – 1080 Côte du Beaver Hall Montréal, Québec, Canada H2Z 1S8 Tel: (514) 904-1496 Fax: (514) 904-1597 Email: <u>ir@csmetals.ca</u> Web: www.csmetals.ca

PRESS RELEASE

November 8, 2016

CANADA STRATEGIC METALS IDENTIFIES MULTIPLE GEOPHYSICAL ANOMALIES AT SAKAMI AND CONFIRMS THE HIGH-GRADE RESULTS ON THE SIMON SHOWING

Montreal, Quebec - November 8, 2016 – Canada Strategic Metals Inc. ("Canada Strategic Metals" or "the Company") (TSX.V: CJC; FSE: YXEN; OTC-BB: CJCFF) and **Matamec Explorations Inc.** (TSX-V: MAT, OTC-QX: MHREF) are pleased to announce the results of the summer 2016 exploration program on the Sakami project. The program included 185 kilometres of magnetic and electromagnetic surveying on three sectors of the property: JR Ouest, Iles, and La Pointe. The program also included prospecting, mapping and sampling work on the Peninsula and Iles sectors. A total of 511 chip samples and 156 channel samples were collected (see **Tables 1 and 2** and **Figure 1 attached**, which show results over 0.1 g/t Au).

The geophysical survey was divided into three sectors, covering 85 line-km on the Iles sector, 89 line-km on the JR Ouest sector and 11 line-km on the La Point sector. The survey helped to better define the position and nature of the various geological units and many fault and shear structures. Interpretation of the various domains identified a total of 61 anomalies with the potential to be associated with mineralization. Location maps for each anomaly are shown in **Figures 2, 3 and 4**.

In addition, field crews completed a surface exploration program that included prospecting, mapping and chip sampling of the mineralized zones identified, as well as channel sampling on some of the previously identified showings, including the Kelmia showing, the Simon showing and the new Bouleau d'Or showing. The best results are shown in **Tables 1 and 2**. The results for the Simon showing supports the presence of high-grade gold values, with channel sampling results of up to **20.8 g/t Au over 1 metre** and **17.45 g/t Au over 1 metre**. A map showing the location of the best chip and channel sample results can be found in **Figure 1**. It should be recalled that the Simon showing was discovered as a result of work carried out in the summer of 2015 on the Peninsula sector, which returned 45.9 g/t Au in a chip sample.* This new gold showing is located on a geophysical anomaly where a strong magnetic low is observed, as well the junction of multiple faults. It is also located on the contact between the LaGuiche sediments (Opinaca) and La Grande belt volcanic and appears encased, like the Zone 25 gold zone in the La Point sector.

Table 1: Best grab sample results*

UTM NAD 83 ZN18									
# Grab sample	Easting	Northing	Area	Au (g/t)					
647852	379572	5901666	JR	0.514					
647858	379839	5901777	JR	1.065					
647888	380995	5902257	lle	0.246					
647891	380593	5902631	lle	2.21					
647903	379581	5901726	JR	0.187					
647905	379639	5901659	JR	0.559					
647906	379674	5901686	JR	0.486					
647907	379674	5901686	JR	0.186					
731070	379576	5898495	Péninsule	0.203					
731074	376258	5897445	Péninsule	0.171					
731075	376258	5897445	Péninsule	0.861					
731081	377569	5896600	Péninsule	0.136					
731200	376169	5897525	Péninsule	0.434					
731216	376636	5896287	Péninsule	0.239					
731224	377498	5896590	Péninsule	0.157					
731303	378921	5897829	Péninsule	0.362					
731343	379242	5897913	Péninsule	0.156					
731351	376169	5897525	Péninsule	0.156					

UTM NAD 83 ZN18								
# Grab sample	b sample Easting		Area	Au (g/t)				
731357	378113	5897968	Péninsule	0.521				
731368	380231	5902752 lles		0.283				
731377	380594	5902632	lles	5.05				
731379	380594	5902632	lles	0.149				
731380	380640	5902623	lles	0.293				
731381	380640	5902623	lles	0.122				
731433	377723	5900345	JR West	0.13				
731440	381740	5904975	lles	0.719				

* The grab samples are selective by nature and are unlikely to represent the average grade of the deposit.

	UTM NAD 83 ZN18 Interval in m							
Channel name	Easting	Northing	Bearing	From	То	Area	Sample #	Au (g/t)
R7	378921	5897827	242	0	1	Kalmia	374678	0.208
R9a	378914	5897832	270	0	1	Kalmia	374681	0.278
R13	378913	5897876	97	2	3	Kalmia	374692	0.435
R1	376227	5897563	213.5	2	3	Simon	375303	0.168
R1				3	4	Simon	375304	0.15
R1				6	7	Simon	375307	0.158
R2	376228	5897573	214	0	1	Simon	375308	2.03
R2				4	5	Simon	375312	0.132
R2				5	6	Simon	375313	3.9
R2				6	7	Simon	375314	0.275
R2				10	11	Simon	375318	0.13
R2				11	12	Simon	375319	0.34
R2				12	13	Simon	375320	1.095
R2				13	14	Simon	375321	0.174
R3a	376224	5897575	208	0	1	Simon	375327	1.51
R3a				4	5	Simon	375331	0.156
R3a				6	7	Simon	375333	0.166
R3c	376219	5897567	208	0	1	Simon	375336	0.258
R3c				1	2	Simon	375337	0.136
R3c				2	3	Simon	375338	0.108
R3c				3	4	Simon	375339	17.45
R4	376217	5897568	207	0	1	Simon	375340	0.263
R5	376216	5897568	205	0	1	Simon	375341	20.80
R6	376217	5897574	206	2	3	Simon	375344	0.128
R6				4	5	Simon	375346	0.145
R6				6	7	Simon	375348	0.48
R8	376215	5897577	212	0	1	Simon	375356	1.625
R9c	376211	5897573	206	2	3	Simon	375361	1.09
R9c				3	4	Simon	375362	1.715
R10	376207	5897574	208	0	1	Simon	375363	0.331
R10				4	5	Simon	375367	0.446
R11a	376203	5897570	203	0	1	Simon	375368	0.163

Table 2: Best channel results

	UTM NAD 83 ZN18			Interval in m				
Channel name	Easting	Northing	Bearing	From	То	Area	Sample #	Au (g/t)
R11a				1	2	Simon	375369	1.485
R11b	376202	5897568	203	0	1	Simon	375370	0.65
R12	376199	5897569	216	0	1	Simon	375371	0.973
R12				1	2	Simon	375372	0.173
R12				2	3	Simon	375373	0.206
R14	376198	5897563	197	0	1	Simon	375376	1.87
R15a	376199	5897561	180	0	1	Simon	375377	0.127
R15b	376200	5897560	180	0	1	Simon	375378	0.219
R17c	376201	5897516	217	0	1	Simon	375384	0.85
R18	376184	5897521	152	0	1	Simon	375388	0.155
R19	376182	5897522	176	0	1	Simon	375389	0.265
R1	380595	5902627	180	0	1	Bouleau d'Or	375390	0.323
R1				1	2	Bouleau d'Or	375391	0.365
R1				2	3	Bouleau d'Or	375392	3.11
R1				6	7	Bouleau d'Or	375396	0.182
R2	380597	5902627	165	0	1	Bouleau d'Or	375397	0.106
				1	2	Bouleau d'Or	375398	0.803
R1	380642	5902613	194	2	3	Bouleau d'Or	374699	0.108
R1				3	4	Bouleau d'Or	374700	0.205

Figure 2: JR West fraser filtered in-phase component and geophysical interpretation

Figure 3: Îles fraser filtered in-phase component and geophysical interpretation

The 2016 exploration program was managed by Consul-Teck Exploration of Val-d'Or, Quebec who supervised the program. A total of 156 channel samples and 511 chip samples were collected and analyzed.

Consul-Teck Exploration implemented QA/QC procedures to ensure best practices in sampling and analysis of the samples. In this case, there was no blank or standard inserted but the Company intends to re-analyze some samples, as described in its QA/QC procedures.

The samples were delivered, in secure tagged bags, directly to the analytical facility for analysis, in this case the ALS Minerals laboratory facility in Val-d'Or, Quebec. The samples are weighed and identified prior to sample preparation. All samples are analyzed by fire assay with AA finish on a 30g sample (0.005-10 ppm Au), with a gravimetric finish for assays over 10 ppm Au.

Jean-Sebastien Lavallée (OGQ #773), geologist, shareholder and President and Chief Executive Officer of the Company and a Qualified Person under NI 43-101, has reviewed and approved the technical content of this release.

ABOUT CANADA STRATEGIC METALS

Canada Strategic Metals is an emerging company focused on the exploration and development of a number of projects covering over 20,000 hectares in Quebec. With broad management experience in green technology and junior resource exploration and development, Canada Strategic Metals is well positioned to aggressively advance this promising property portfolio for its shareholders.

For more information on the Company, please visit <u>www.csmetals.ca</u>.

Jean-Sébastien Lavallée, P. Geo President and Chief Executive Officer 819-354-5146

Paradox Public Relations 514-341-0408

> Neither the TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release.

